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1. SUMMARY OF RESEARCH

Most structural systems of naval relevance feature a variety of structural subsystems or
subcomponents. These features often can have a drastic effect on the dynamic and acoustic
behavior of a system, as evident in the vast amount of research. When predicting the dynamic

and acoustic behavior of a system one must decide how much effort will be spent on modeling

these smaller structural features. Consider, for example, a structural system that contains a
simple mass element. The question arises, when does the size of this mass become large enough
to justify a greater modeling effort? That is, can the mass be modeled using a lumped
representation or must it be treated using some distributed representation? Moreover, how
accurate must a spatial representation be to obtain a valid acoustic prediction? The same
question can be posed for other structural subcomponents. The purpose of this work is to
determine what, if any, system parameters influence the level of detail necessary to accurately
represent the subcomponents of a structural-acoustic system. In conjunction with this research,
the surface variational principle (SVP) was also extended for capped cylindrical shells.

To determine the impact of feature scales, a numerical interrogation of a simple fluid-
loaded system was performed.  This system consists of a semi-infinite plate that is simply
supported in a rigid baffle which bounds the acoustic fluid. Inertial scale effects were
investigated by considering an attached mass of varying dimension. Methods were also
developed to study elastic scale effects through a spring-suspended mass and the scale effects of
coupling two regions of the primary structure through a wave-bearing member supported by
spring elements. Since closed form solutions to these types of problems are not readily available,
the analysis was numerical in nature. The acoustic surface variational principle (SVP) is ideally
suited to this research because it does not implement a surface discretization that has its own set
of spatial scales. Note that the numerical techniques applied in this research, however, do not
restrict the use of the results in other methods. The research focused on the influence the
structural feature scales have on the structural-acoustic response of the entire system. The effect
of feature scales on the radiated acoustic power under a general harmonic excitation, for
example, was of particular interest.

Once the influence of these scales is identified, a greater understanding of how the size of
a particular feature can affect the acoustic output of a system will be gained. Furthermore, future
modeling efforts of structural-acoustic systems can be directed in a more efficient manner.




II. ANALYSIS METHOD
This section briefly outlines the variational method [1] as it applies to the semi-infinite plate

[2] used for the numerical analyses discussed in the next section.

II.1 SVP for Plate System
The clean semi-infinite plate which is simply supported in a rigid baffle with one wetted

surface is shown in Figure 1. Differential elements of surface area dA and dA’ correspond to
points xs and x's on the surface of the plate or baffle. When the actual value of the surface
pressure distribution, Re[p(xs) exp(-iw1)], has been found, the variational quantity J will have a
stationary value when an admissible virtual increment, 8p(xs), is applied. The variational

principle states
d]=0

where J for a planar surface, fluid-loaded on one side, is given by

7 =2] {Fp(x)p(x5)~ In(x5) x Vp(x5)]- In(x5) X Vpxs)]}

(1)
X G(xg|x5)dA'dA — i8mwp| p(xs)v,(xs)dA
S
The variables are nondimensionalized as
E==,  px)=pc*pE), v, =ch,(&). )

+o0 a2

Figure 1. Semi-infinite fluid-loaded elastic plate in rigid baffle.



The nondimensionalized pressure and normal surface velocity are p and V,, respectively. The
density, p, and sound speed, c, are for the acoustic fluid and a is the width of the plate. The carat

can now be dropped since all the terms are nondimensional.
The surface pressure distribution is expressed using a Ritz expansion with N linearly

independent basis functions as

N
P& =Y vi(&)P, €)
i=1

where it is assumed the pressure vanishes beyond the distance r=0a/2 [3, 4]. Therefore, it is only

necessary that the functions, y, satisfy the condition

wi(£)=0, §=i-‘25 @

and be both continuous and piece-wise differentiable. Similarly, the surface displacement is

expressed as

M
WEN=aY 8, OW,0, —5<E< )

j=1
such that the basis functions, ¢, are continuous, piece-wise differentiable, and satisfy the

geometric boundary condition

6,©)=0, E=tz. ©)

Note that M may be different from N. A harmonic time dependence is assumed for the

generalized modal coordinate

gj(n= Re[W; exp(—iawt)] . @)
Therefore, the nondimensional normal surface velocity is
M
v (&,1) = —ikay, ¢;(§)W;(1) ®)
j=1

where ka = aw/c is the nondimensional wavenumber and c is the wave speed in the acoustic

fluid. By substituting these expansions into Eq.(2) and applying the variational principle,

AU o i=1..N ©)

JP;
a non-square system of equations is obtained relating the unknown modal pressure amplitudes,
P; and unknown displacement amplitudes, W;.




The remaining equations are the coupled equations for structural vibration. These are
found by applying Lagrange’s equation to the potential and kinetic energy expressions for the
plate. The generalized forces are the force due to the harmonic excitation

Qi = pc2a2 Re[exp(—iawt)F}] (10
and the pressure force due to fluid-loading on the surface of the plate
M
QF = —pc*a’Re exp(-ia)t)z R; P, (11)
I=1
where

P! %
Fi= [f(&)¢;d¢ and Ry= [6;wdE. (12), (13)
For a line excitation, f( £)=f6(&-&,), where &, is the location of the force of magnitude f.
Combining the Lagrangian equations and the acoustic equations, Eq. (9), a square system of

equations is obtained which completely describes the coupled fluid-structure response,

[A] —2nka)*[R) |[P) _| {0}
[[R] 0] ]{W}’{{Fe}} "

where
o O
2 2
ap= [ [{kaywOwi©)- v & Wi} x G(¢E)dLag )
o O
22
and
Sh CS 2

The mass per unit surface area of the plate is psh, where h is the plate thickness. The
characteristic wave speed for the structure, cs=D/psha?, depends on the bending stiffness of the
plate, D=Eh3/(12(1 -v2)), where v is Poisson’s ratio. The nondimensional generalized inertia and

stiffness coefficients are, respectively,

% %
pp= [9;0d¢ and Ky = [9101dE . (17), (18)
-1 -

Once Eq.(14) is solved for the modal coefficients, P; and Wj the surface pressure and
displacement can be constructed from Egs. (3) and (5), respectively.



II.2 Formulation for Structural Features

The attached structural features are added to the above formulations by implementation of
Hamilton’s principle. The displacement of the element is described as some variable, say g;.
This variable will either be in terms of a main system displacement or be an added degree of
freedom which is somehow coupled to the main system motion. Nevertheless, the kinetic, T¥,
and potential, Vf, energy expressions for the added feature are combined with the energy
expressions for the main system. Of course, for many common features one of these energy
relations is not present. A new set of coupled structural equations is obtained when Lagrange’s
equation is applied to these energy expressions, Ty and V,,;. Replacing the original Lagrangian
terms, the lower partition of Eq. (14), with the terms that include the added structural features, a
new set of equations is obtained which completely describes the behavior of the combined

system. Note that some features will increase the number of degrees of freedom of the system by
Ny. Therefore, the size of the system denoted in Eq. (14) will increase accordingly. However, the
generalized forces associated with these terms N+M < i € N+M+Ngz, that is, the added degrees of

freedom, will be zero since no external excitation forces are applied to the elements.

III RESEARCH TOPICS AND RESULTS

Determining the effects of feature scales on the structural-acoustic response has not been
previously considered in the manner developed here. In this research, scales associated with
each structural element, or feature, are introduced into the numerical formulation by describing
the element spatial distribution with either an equivalent series expansion or a chapeau function.
The influence of different scales on the combined system response is then observed by either
changing the number of terms in the series or changing the width of the chapeau distribution.

This research focuses on the influence of inertial, elastic, and coupling scales on the
structural-acoustic response of a semi-infinite plate. Inertial and stiffness scale effects are
quantified by considering a mass and a spring-suspended mass, respectively. Finally, the scale
effects on the coupling of two or more regions of the primary structure are considered by
introducing a wave-bearing member supported by spring elements. These structural features are
line attachments in that they have an infinite dimension in one direction. Note that in each
analysis, only a single subsystem type is considered.

Below is a description of the physical properties and modeling parameters of the bare
plate and the acoustic fluid. Then a description of the substructural features considered is

presented along with an overview of some results.



.1 Clean System
The basis functions implemented for the displacement of the plate, Eq. (5), are the

orthogonal eigenfunctions for in vacuo vibration of a simply supported plate

¢; = sin[in(€ +1/2)] , —-;- <& s%. (19)

with the parameter a set to a value of unity. Likewise, the basis functions for the surface

pressure, Eq. (3), are

y; =sin[jn(&/o+1/2)] , —%sgs% 0)

with the baffle size set to a value of o =5. The properties of the steel plate, which is submerged
in sea water [5], are

a/h =125, pslp =1.58, cs/c = 3.84,
where £ is the thickness of the plate, p is the density, ¢ is the wave velocity, and the subscript s
refers to steel. Even though coincidence of the plate, ka = 24, is well above the frequency range
investigated, acoustic energy will be radiated because of edge affects and anti-symmetries which
result from the presence of the substructure.

Convergence of the numerical method can be established by examining the modal
amplitudes of the series basis functions for the plate displacement and fluid pressure. For many
of the analyses considered in the following section, twenty structural modes, M = 20, and one-
hundred fluid modes, N = 100, were used for the range of excitation frequencies considered, 0.05
< ka <10.0. As seen in Figure 2 for two example frequencies, the number of modes used is quite
adequate. The magnitudes of the higher numbered coefficients are several orders of magnitude
smaller than those with lower indices and are declining with increasing degrees of freedom.

A frequency dependent system parameter commonly used to determine so-called

important scales is the free-flexural wavelength given by

7 T

a @ a
where cy is the flexural wave speed in the plate ([6], pg. 211). This parameter will be used for
comparison purposes in the analyses that follow. For the case at hand, the free-flexural

wavelength is that which occurs in an infinite plate with same material properties as those shown

above
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II1.2 Inertial Scales (Publications 2,4, 5,7)*

The effect of inertial scales on the response of the system is the first to be investigated.
Inertial scales are analyzed by attaching a line mass to the semi-infinite plate, Figure 3. For the
base case the mass is represented using a lumped representation. That is, all of the attached mass
is confined to a line parallel to the infinite dimension of the plate. The impact of scales will be
studied by comparing the system response for this base case to the response found when the mass
is distributed over a certain region of the plate. Two types of distributions, the truncated series
and the chapeau function, are considered. The mathematical formulation for these distributions

will now be presented.

 Fid

RigidBaffle . gemi-infnite Plate

F(w) Line Mass

Figure 3. Inertial Scales: Semi-infinite plate with line mass
attachment.

As stated above, for the base case, the mass is modeled using a lumped representation

5(6 - 50) (22)
a

mp(g) = Mygy

where my,; is the total added mass divided by the plate mass, m,,, = -m“—‘;‘;ed—, and & &) represents
a

s

the Dirac delta function.
For the first spatial distribution considered, the mass is represented using a sine series

spatial expansion,

L"l
my(&)=Y m,T, 23)
=1
where L, is the truncated number of terms and

r,=sinnn(E+12)] ., - <E<li | 24)

* Publication numbers in () refer to Section VI, items in [ ] refer to reference numbers



Each term in this series represents a certain scale of the distribution. As L,, is increased, the
mass becomes more centralized around the attachment position, &,. Conversely, as Ly
decreases, the mass becomes more distributed over the plate. Since it is desired to only compare
scales, the mass coefficients, mp, are normalized such that when the value of L,, is changed the
total added mass remains constant. Scales are identified as sufficiently small and said to be
unimportant when further increase in the number of terms, L,y, resulted in no appreciable change
in the predicted system behavior. The mass coefficients are determined from

1

2
my =2 [mET,(&)dE . (25)
1

2
Since it is desired to model the point mass using a series, the mass coefficients are found by

substituting Eq. (22) into Eq. (25), with the result

m, =2m,, sin[mr(éo + 1/2)] . (26)
An example series distribution for a single mass located at & = 0.2071 is shown for a few series

lengths, Ly, in Figure 4. Note, that for all the mass examples, the maximum series length is only
limited by the necessity of m/psha 2 -1. Violating this condition results in a non-physical
negative mass somewhere along the plate.

Finally, a more uniform mass distribution is considered by implementing a chapeau
representation. Denoting the unit step at & by u( &), the mass can be represented as

Myqy

m. (&)= A

[u(g - (‘go - Am 12))- u(é - (éo + Am /2))] . (27)

m

Instead of changing the series length as above to examine scale affects, the ratio of the mass
width to the plate width, Ay, is varied. An example for a few distribution widths is shown in
Figure 5 for a mass located at §=0.2071. As Ap, decreases the mass becomes more centralized
around the attachment position, £,. Conversely, as A, increases the mass becomes more
distributed over the plate. Again, since it is desired to only compare scales, when the value of
Ay is changed the total added mass remains constant.




........... L =2
...... L=
L=
E L =8
k=)
8 1 point mass
£
72}
8
=
T T T T | T T T i I' I ¢ 1 1 I T T T 1
-0.5 -0.25 0 0.25 0.5
g
Figure 4. Example mass distribution for finite series.
One mass of 0.25 at § = 0.2071.
— 4, =02
| ——— A =04
= [ I I | A= 0.5
g ]
3 't point mass
g 4
£
2 T i
<
E - !. - :- PR R I .:. -;
4 v (]
[ 1,
— | [
! 1
: : 1
! I
O Tlllllllllllllltt]lllll.
-0.5 -0.25 0 0.25 0.5

Figure 5. Example mass distribution for chapeau representation.
One mass of 0.25 at £ = 0.2071.
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Regardless of the distribution used, the mass is incorporated into the system formulation
by determining the nondimensional kinetic energy due to the added mass alone

I ME
LN |

2 M
m=—;-3—%2 &0, 4 dE s - @8)

N =

Recall that m (&) is relative to the plate mass in Egs. (22), (26), and (27). After applying
Lagrange’s equations, the relation for Djk, Eq. (16), is modified as

2
}k=%;[( )Kjk_(ka)2ﬂjk_(ka)2njk) @)

where the inertial coupling coefficient, 7jx, depends on the type of distribution used. When the

lumped representation Eq. (22) is used

Myay ¢j(€o) ¢k(§0) : (30)
For the series representation Eq. (23), however, it is defined as
ho
N = f > m,I,¢;¢.dE . @BD
_% n=1
And finally, for the chapeau distribution, Eq. (27), the inertial coupling coefficient becomes
m go +A"l
Nk = Am' J.¢j ¢ dS . (32)
m 50 _A"I

The inertial coupling coefficient is named such because as expressed in Eq. (31), for example, it
can be used to investigate the coupling of inertial scales in the substructure to scales in the main

structure.
The forced response of the combined system can now be predicted using Eq. (14)
provided Djy is replaced by . It should be noted that in the formulation presented here the

distributed mass is treated as a locally reacting structure in that it can only exert forces normal to
the surface of the plate. In other words, the mass does not react to bending forces.

Several metrics could be used to determine the effects of the mass distribution. Plate
surface displacement, surface velocity, surface pressure, and far-field directivity are just a few
characteristics that could be studied. However, a single number metric which gives a good
indication of changes to the system response is the radiated acoustic power. For the work
presented here, the power radiated with a distributed mass, Eq. (23) or (27), will be compared to

11




the power radiated using a lumped mass representation, Eq. (22). It will also prove convenient to
represent the change in power as the logarithmic difference in the power for the distributed mass

and the power for the lumped mass, that 1s,

MJ , (33)

APower=1010g10[ Power,,
umpe

Consider the case of a line mass of my, = 0.25 attached to the plate at £ =0.2071. The
system is harmonically excited by a line force located at &, = -0.25. With the mass in a lumped
configuration, the first three fluid-loaded resonances for this case occur at approximately k ja =
0.2, kpa = 1.25, and k3a = 3.35. The change in the radiated power due to using the series
representation instead of a lumped representation is shown in Figure 6. First note that while used
for illustrative purposes, the lines are not continuous in the Ly, direction. That is, a series length
of five and one-half is not possible. Also note that the maximum series length for this
configuration is L, = 16. As expected, the effects of the distribution on the change in radiated
power are most drastic around the resonances. However, the radiated power around the first
resonance is basically not affected by using a series distribution in that the differences in radiated
power for all series lengths considered are much less than 1 dB. Therefore, only the data around
the second and third of these frequencies is shown. Near the second resonance, the lower series
lengths can give as much as a 6 dB error in predicting the radiated power. The behavior of the
contour lines is due to the shifting of the resonance peaks caused by distributing the mass.
Although the total added mass does not change, the changing distribution causes the resonance
frequency to slightly change thus resulting in a large change in the radiated power at a particular
frequency. For all of the frequencies considered, eight terms was the most needed to get an
accurate prediction of the radiated acoustic power. Therefore, for the series distribution, inertial

scales associated with terms nine and higher do not cause a noticeable impact on the radiated

power at a particular frequency.

12
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Figure 6. Change in radiated power due to representing a lumped mass with a
series representation. One mass of m = 0.25 located at & = 0.2071.




Before considering the next type of distribution it is interesting to note one more attribute
of the series representation. In general, when approximating an impulse function with a finite
series, adding more terms improves the approximation. When predicting the radiated acoustic
power, however, increasing the number of spatial series terms does not always guarantee a
solution that more closely matches that of the lumped mass. For example, consider the case of
four masses of 0.1 each that are equally spaced along the plate span. Figure 7 shows a
comparison of the radiated power predicted using the series representation to that predicted using
a lumped mass representation. It can be seen that at ka = 3.2 series lengths of 7 and 8 give
results closer to the lumped model than lengths of 6, 9, and 10. For the single mass case, the

same type of behavior occurs in Figure 6 around ka = 3.15 for the smaller series lengths.
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A comparison of the radiated power found using the lumped mass to the power found
using a chapeau mass distribution, Eq. (27), is shown in Figure 8. Again, the mass of m g = 0.25
is located at £ = 0.2071 and the excitation is at . = -0.25. The lines in this figure represent
constant multiples of + 3 dB. Due to the placement of the mass at £ =0.2071, the maximum
distribution width is about A,;, = 0.58. As expected, most of the impact due to scales occurs
around fluid-loaded resonances. Also shown in the figure is a dashed line representing the
percent of the plate span that would be occupied by one-quarter of a free-flexural wavelength at
the excitation frequency. A features size is often considered to be unimportant when its
characteristic dimension is smaller than one-quarter of a free-flexural wavelength, Ag/4. As can
be seen in the figure, however, inertial scales less than Ag/4a can be very important. Near the
third resonance, at ka = 3.25, for example, using a lumped representation to model a mass that is
actually distributed over 15% of the plate span, or Ay, = 0.15, can result in under predicting the
radiated acoustic power by almost 6 dB. However, when the forcing is at a single frequency
away from the resonances, any mass distribution considered, including the lumped
representation, can be used to predict the acoustic power to within less than £ 3 dB of error.

As a result, for the frequency range considered, inertial scales of less than one-eighth of
the plate span are not important. For most of the frequency range, when a representation is used,
Egs. (23) or (27), such that most of the mass is confined to a region of less than one-eighth of the
plate span, scales no longer become important. Therefore, whenever the mass distribution is
confined to within this region, a lumped mass representation may be used without significantly
affecting the predicted acoustic behavior. When a broadband excitation for 0.5 < ka < 4.0 is
applied to the system the change in radiated power is much larger, Figure 9. This plot is
somewhat crude in the sense that it is simply a sum of the ka data points in Figure 7 which are
spaced at increments of 0.05. Therefore, if all of the frequencies were present in the actual
excitation, then the error may be somewhat different. However, it would then be necessary to
perform an integration under the curve to obtain accurate values. Nevertheless, as can be seen
from this plot, an error of more than 3 dB is attained when the mass is distributed over more than
one eighth of the plate or A, > 0.12.

15
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Figure 9. Change in radiated power due to treating a distributed mass as a

lumped mass. One mass of m,4 = 0.25 at £ = 0.2071.
Broadband excitation 0.5 < ka £ 4.0 in 0.05 increments.

II1.3 Elastic Scales (Publications 3, 9)

Next the impact of elastic scales on the structural acoustic response of the system is
considered. Here it is desired to determine the influence of stiffness distributions at different
spatial scales. To that end, consider a line mass attached to the plate by a line spring at a position
&,, Figure 10. Note that the number of degrees of freedom of the system increases by one due to
the added spring/mass. The types of distributions used are the same as those used for the mass
described above. The suspended mass, however, is represented as a lumped element throughout
this analysis.

The representation for a lumped spring located at &, is

0(&-¢,)
kp(é) = krat ___;a_go_ (34)
where k,4; is the stiffness of the added spring, ka, divided by the bending stiffness of the plate,
kya®
or, k= AD :
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Line Spring

F(®) m

Figure 10. Elastic Scales: Semi-infinite plate with Line
mass suspended by line spring.

In the exact manner as above, the spatial series representation for the spring is given by

L
k(&)=Y k. T, (35)
n=1

where L is a truncated number of terms and I, is given in Eq. (24). The number of terms in the
expansion will be varied to study scale effects. The stiffness coefficients, k,, are calculated in

exactly the same manner as for the mass distribution in Eq. (25).
Denoting the unit step at &, by u(&-&,), the stiffness distribution can also be represented

with a chapeau distribution as

() = 2 E - (6~ A 12D~ u(E = G+ 81 36)
k

where the width of the distribution is A¢. To examine scale effects of the stiffness, the width of

the distribution, Ay is varied. With each Ag, however, the total added stiffness remains constant.
The system of equations given by Eq. (14) must now be modified to account for the

added subsystem since the number of degrees of system is increased by Nz = 1. Defining the

extra degree of freedom as g, the potential energy of the added spring is

1DjXY < B ¢
j=1k=1 j=1

where the stiffness coupling coefficients are defined as

A _
ajk—

Sy N | —

1
p
K(E)9;(E) D (E)dE, of = [k(&)¢;(&)dE, (38), (39)

1
2

N =

and
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k(&)dE . (40)

2
When solving for the lumped element solution, k(&) in the above equations is replaced by kp( &).

Similarly, ks(€) and k(&) are substituted to determine the coupling coefficients for the series and

C_
o, =

chapeau distributions, respectively.

The added kinetic energy term due to the mass is found by modifying Eq. (28). Since the
mass is now affixed to the added degree of freedom g, the terms ¢; and g are each replaced by

4, and M is replaced by Nz =1

2 2
ha o __lphtka? .

S =P

pa c2 rat qzqz

T, = 1)

N |-

Numerical modeling problems can occur when using the series representation, Eq. (35),
for the elasticity. Unlike the chapeau distribution, a series can result in a locally negative
potential energy for the combined system near the edges of the plate. This is due to the fact that
the series representation takes on negative as well as positive values. Since the potential energy
of the plate alone gets small near the baffle, the combined system potential energy can have a
negative value near the edges of the plate. This occurs even though the total system potential
energy is still positive. The result is a localized negative elasticity. This numerical problem is
analogous to having a locally negative mass in the preceding section, that is m/psha < -1.
However, the condition here is violated for many stiffness values of interest. Therefore, to avoid
problems associated with this irregularity, the series representation is not used to model the
spring.

It should again be noted that in the foregoing analyses the distributed elements are treated
like a locally reacting components. That is, only normal forces can be exerted on the plate by the
distributed elasticity.

After applying Lagrange’s equations, the relation for Djk, Eq. (16), is modified as

R Rl (c 2 A 2
Dy = l;_a((?s) K — (ka)* +(£c“) a}}] ' (42)

Since there is an increase in the number of degrees of freedom, Eq. (14) is no longer valid. The
matrix of equations describing the combined system is now
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[A] —2aka)*[R) [0] |(P) ({0}
[R] [D°] (K] fwt=1{F} 43)
[0] (K] [M]|12) ({0}

where

K, =-%§(P§)2a§*, @4
and |

M, =P£K%)2 of —(ka)zn%m,} @5)

and the lumped mass is designated by M rat-

Consider an added line mass of 71 g = 0.25 suspended by an added line stiffness of kyqr =
2860.0 at &= 0.2071 with the harmonic force excitation at &, = -0.25. These mass and stiffness
values correspond to a in vacuo vibration absorber tuned to ka = 5.0. Within the frequency range
considered, the in-fluid resonances of the combined system with a lumped spring are
approximately ka = 0.2, 1.25, and 3.35. Similar to the mass analysis above, the power radiated
with a distributed stiffness, Eq. (36), will be compared to the power radiated using a lumped
spring representation, Eq. (34).

The radiated acoustic power versus frequency is shown for the lumped spring as well as
several distributed stiffnesses of a chapeau representation in Figure 11. The power appears to
vary the most from the lumped representation solution at and around the in-fluid resonances,
which are marked on the figure. For a more direct comparison, the change in the acoustic power
is shown in Figure 12. Although the largest differences do occur at the resonances, large
differences also occur between resonances. For example, at ka = 3.0, a spring which is
distributed over less than one-quarter (22%) of the plate span will result in a radiated power
which is 3 dB greater than that which would be predicted when using a lumped element
representation. This occurs even though, on a local scale, the local stiffness is smaller for larger
distribution widths. For the type of distribution used, though, when the excitation frequency is
between resonances, stiffness scales less than ten percent of the plate span may be represented as
lumped elements without any si gnificant change in the predicted acoustic power .

Figure 13 shows lines of constant change in radiated power versus nondimensional
frequency, ka, and distribution width, Ag. For clarity, only the lines separating the regions of 0
dB, less than -3 dB, and greater than + 3 dB are shown. Note that since the spring-mass
subsystem is located at £ = 0.2071, the maximum distribution width allowed is approximately

58% of the span. If this width is exceeded, the center of the spring must be relocated to avoid
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Figure 11. Radiated acoustic power for a lumped element and various
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Figure 13. Difference in radiated power between distributed and lumped representations as a
function of wavenumber, ka, and distribution width, Ag. k4 = 2860.

distributing the stiffness over the baffle. Figure 13 clearly shows that over much of the ka range
considered, a feature spanning 10 to 15% of the plate span may be modeled as a lumped element
while introducing only a small error in the predicted acoustic power. Figure 13 also indicates
that the greatest difference between the lumped and distributed representations is near the fluid-
loaded resonances, with the region of affected ka values broadening as the feature scale
increases. For an infinite plate with the same physical properties as those used here, the free-
flexural wavelength has a value of 0.66a at ka = 4.0. Therefore, depending on the degree of
precision desired in the numerical simulation, Figure 13 indicates that elastic scales less than
one-quarter of a flexural wavelength can be important. For example, at ka = 1.3 the free-flexural
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wavelength is 1.16a. A distribution width of one-fifth of a free-flexural wavelength at this
frequency is around 23% of the plate span or A; =0.23. As shown in the figure, using a lumped
element to represent this spring would result in under predicting the radiated acoustic power by
more than 3 dB. Over a majority of the ka range considered, however, elastic scales less than
10% of the free-flexural wavelength can be modeled using a lumped element representation
without any significant penalty to the numerical prediction.

For the examples shown, elastic scales less than one-tenth of the main structure
dimensions can be replaced with the much simpler lumped element representation without

significantly affecting the numerical prediction.

II1.4 Coupling Scales: Subplate - Spring Subsystem (Publication 8)

The final subsystem to be considered for the plate is a semi-infinite plate, referred to
hereafter as a subplate, suspended by a line spring at each edge, Figure 14. The springs are
modeled using the series method described in the previous section. The motion of the suspended
plate, however, is treated using a modal expansion with a fixed number of terms. For the sake of
brevity, only the modeling of the subplate will be described. The motion of the subplate is

described using the expansion,

M
4
280 = Y, 2(8)gf (1) (46)
i=1
where M p is the truncated number of assumed modes, ¢¢ are the modal amplitudes, that is, the
extra degrees of freedom, and { is the nondimensional coordinate of the subplate. The basis

functions used for the subplate displacement are the normalized orthogonal free-free modes [7]

Semi-infinite Subplate

Figure 14. Coupling Scales: Semi-infinite wave-bearing subplate suspended
by line springs
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given as

Q=1 -W<t<l
(&) =~3(0) , A7)

Q,(8) = cos(B;(§ +1/2)) + cosh(B; (£ +1/2))
—C(sin(B;(§ +1/2)) +sinh(B;(§ +1/2))) |
, ., 22
_ cos(f;) —cosh(f;)
sin(f;) —sinh(f;)

The values of f; are the solutions to the eigenvalue equation, cosf; coshf3; =1, noting that fo=
B; = 0. The functions ¢ and £y in Eq. (47) are for pure translation and pure rotation,
respectively, of the subplate.

While the springs may be distributed over the main plate, they are only attached to the

endpoints of the subplate. ~ As a result, the potential energy expressions for each of the springs
are the same as Eq. (37) provided that g, is replaced by Z( {,=%1/2), depending on the spring

being considered. That is, Eqgs. (38)-(40) become

1 1
2 L 2 L Ly
af = jl Zlk,,rn¢j¢kd§, of = jl 2_, a0, dE (L), (48), (49)
2 2
and
1
2 L
o= [ D kT, dE 2;(6) 2o - (50)
1nml
2

The kinetic and potential energy expressions for the subplate are similar to those for the main
plate [2] except the new modal functions, £2, and the physical properties of the subplate are used.
Taking into account these modifications, the system is then be solved using Eq. (43). The
resulting Z vector provides the modal amplitudes of the series expansion, Eq. (46), used to
construct the structural motion of the subplate. It should be pointed out that the number of
subplate modes, M p, will not be changed once convergence has been verified.

The harmonic force excitation is located at & = -0.25 and the range of forcing

frequencies considered is 0.05 < ka < 6.0. The properties of the subplate are
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a)a=0.5,  pJps=03506,  cples=10, and  hyh=1.426

where the subscript p refers to the subplate. These properties roughly correspond to a subplate
with a density equal to that of aluminum and a mass equal to one-quarter that of the main plate.
The subplate motion is described using an M = 12 mode expansion.

For a sample case, the subplate is suspended by springs located at £=-0.293 and & =
0.207. An example of the stiffness distribution for various series lengths is shown in Figure 15.
Again, the total stiffness is the same for all of the expansions.

For the first example, the springs have a stiffness ratio of kyqr7 = krar2 = 12.17. Here the
series expansion can be implemented because the added stiffness values are much lower than in
the preceding section. The power radiated with the distributed stiffness is compared to the power
radiated using the lumped spring representations in Figure 16. For example, at ka = 0.25, a
spring which is distributed using a four term expansion will result in a radiated power which is
about 1 dB greater than that which would be predicted using a lumped element representation.
Since the differences are small above ka = 2.0, frequencies above that value are not shown. As
before, simply increasing the number of terms does not guarantee a better prediction. As
expected, the largest differences occurs near the resonances. Increasing the value of the spring
stiffnesses to ka1 = krar2 = 17.17 has the affect of amplifying these differences in power near

_the resonances as shown in Figure 17. Away from the resonances, however, the effect is not 'as
noticeable. The resonances associated with lumped springs are indicated in the figures. Note
that around ka = 0.5 the distribution caused an increase in the power for the larger stiffness while

stiffness (nondim.)

0.5 025 0 025 05
g

Figure 15. Example stiffness distribution for various series lengths, L.
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causing a decrease for the smaller stiffness. For the stiffness values given in this example,
though, when the excitation frequency is between resonances, all of the stiffness scales shown
may be represented as lumped elements without any significant change in the predicted acoustic
power. These changes become larger when higher valued stiffnesses are used. However, the
numerical problems associated with negative elasticity, mentioned in the previous section, can
become more of a concern. Results for this analysis using the chapeau distribution have not been

obtained at this point in the research.
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IV. MODELING OF CYLINDRICAL SHELL STRUCTURES

The primary thrust of this work was to extend the surface variational principle (SVP) to
capped cylindrical shells. Prior development of SVP for axisymmetric shapes had only
considered axisymmetric excitations in the form of an oscillatory force. The SVP formulation is
the only modeling technique that represents the surface response in a spectral manner. Thus,
extending the scales formulation to treat phenomena encountered in cylindrical shell structures
required prior work advancing the generality of the technique. Equally important, it was deemed
essential that all work be verified by comparison with accepted structural acoustics boundary
element or finite element computer codes.

The first phase of this effort entailed modifying the basic variational principle to address
scattering problems. This was achieved by rederiving the principle from a seldom used version
of the Kirchhoff-Helmholtz integral theorem, in which the scattered pressure (rather than the
total pressure) is the basic variable. The computer programs were correspondingly altered. The
results obtained from these programs for end-on scattering from flat and hemi-capped rigid
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cylinders were verified by comparing surface pressures with those obtained from the CHIEF
program.

The next effort was devoted to implementing SVP for situations where the surface
response is not axially symmetric. This was achieved by using an azimuthal harmonic
decomposition in which each succeeding harmonic is obtained in a semi-recursive manner from
previously computed harmonics. Although only rigid body configurations were considered here,
the analyses considered both arbitrary types of rigid body motion, and scattering of waves at
arbitrary incidence to rigid bodies. Here again, CHIEF was used to verify the results.

The final effort involved coupling the general version of SVP with a structural dynamics
formulation, in order to address the ultimate objective of submerged shells. Because the overall
project needed to avoid modeling techniques entailing discretized representations of the
structural motion, a new formulation for vibrations of axisymmetric shells was developed. The
technique uses a Ritz series expansion of the meridional variation of displacement, coupled with
a Fourier decomposition of the azimuthal dependence. The unique aspect of the formulation is
the method by which the meridional basis functions are selected. It is essential that all continuity
conditions be satisfied along the surface. The usual families of basis functions fail to satisfy these
conditions at the ends. The method that was derived maps the modes of a perfectly spherical
shell onto the meridian. Because of the change in surface shape, these are uncoupled modes for
the shell. Consequently, the modal displacement amplitudes are fully coupled. This approach is
equally valid for axisymmetric and asymmetric responses, as was demonstrated by comparing
the vibrational modes of a long hemi-capped cylindrical shell with predictions obtained from
SARA-2d. The significant feature of the formulation, beyond its robustness, is the suitability of
the mapped-spherical-mode basis functions for the scales analysis. This feature stems from the
fact that the highest wavenumber contained in each basis function is one greater than the
preceding.

In addition to verifying the modal vibration properties of a shell in a vacuum, SARA-2d
was also used to validate results for a very slender geometry at a representative mid-range
frequency (tip-to-tip aspect ratio of six and ka = 4). The results obtained from the two methods
were in remarkably close agreement. Comparable computations have not been reported in the
open literature. Thus, in addition to providing certainty of the formulation for further work
investigating scales, the modeling efforts performed here provide realistic benchmarks by which

individuals working in structural acoustics may verify their work.

V. CONCLUSIONS
We have presented here a new approach to examining structural acoustics problems:

expansion of relevant structural details in terms of a spectral series and chapeau distribution.
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The research tool presented allows the examination of the effects of elastic scales through the
variations of a inertial or elastic distribution. This technique permits evaluation of the interaction
and coupling of the total structural and fluid response. The methods and examples presented
here can and will used in future research to determine the impact of these scales by considering
other locations of the line spring-mass subsystem as well as multiple subsystems. The effects of
feature scales on other system parameters is also of interest. However, a more complete analysis
method is needed to continue this research. The ultimate goal of this continuing research is to
make generalized statements concerning the critical scales in structural acoustics systems. This
information will then allow structural acoustic modeling and subsequent analyses to be

performed in a more efficient manner.
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